There is an art to the practice of any science, a
point argued cogently by Donald E. Knuth,! author
of the series of volumes deliberately titled The Art
of Computer Programming. If “‘science” is knowledge
which has been logically arranged and system-
atically codified, then ‘‘art” refers to the use of
personal skill, guided by a sense of aesthetics, in
applying these organized principles, whether they
describe engineering, physics, mathematics, or
computer programming. For, at a given stage in
the translation of an art into the organized body
of the corresponding science, that which is still art
contains intuitive and aesthetic factors which defy
precise formalization. Computer programming—
with its scope extending from ‘‘arty’ folklore to
science-based automatic code generation and veri-
fication—is a prime example of these subtle differ-
ences. Now widely called computer science, the art
of programming continues to challenge and often
baffle the most scientific of managers and ‘‘com-
puter scientists.’’

Programming languages are the tools with which
computer scientists practice their particular blend-
ing of art and science. As every artisan and crafts-
man knows, having the right tools affects both the
work and the results. The abundance of program-
ming languages is an indication, in part, of the
desire to provide the right tool for a myriad of pro-
gramming situations.

The PLZ family of languages is intended to meet
the needs of a relatively new experience—micro-
computer system programming. At the core of
each language is a common kernel which is
expanded to make each separate language. The
several languages of the family can each be applied
to the tasks for which it is best suited and then
later linked together into a single program.

In this article, after a perspective view of the set-
ting for new language development, the key objec-
tives which governed the development of PLZ are
examined. Then the principal features of the new
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system-programming-language family are describ-
ed. Two individual languages have been designed
and are in use. Others are under consideration.

Perspective

The advent of microprocessor technology has
extended the challenge of controlling software
development into a wider domain and has intro-
duced an abrupt increase in the concern for the
economics of software development.? Whereas the
cost of software often equals that of hardware in
megacomputer systems, it can totally dominate
the economics of a microcomputer-based system.
Indeed, the fundamental issue which drives the
current interest in ‘“‘structured programming” is
improvement in the program development process.?
In this context, improvement is usually measured
in terms of reliability, time to completion, and
flexibility. One of the central issues in the study of
structured programming is the effect which the
programming language has on the program develop-
ment process. While the results of this study are
inconclusive, the evidence seems to indicate that
Algol-like languages, which organize programs
into procedures and blocks, tend to reinforce desir-
able programming practices. Linear languages,
such as Fortran, Basic, and assembly language,
require greater discipline to achieve coherent struc-
ture. This suggests that within a fixed time and
money budget, Algol-like languages are generally
better.

Language levels. A crude taxonomy of program-
ming languages can be based on their degree of
machine independence and on the types of problems
for which they are best suited. Languages whose
statements model machine operations are called
low-level languages. Assembly language is the
quintessential low-level language. Languages whose

COMPUTER



statements are algorithmic rather than machine
oriented are called high-level languages, e.g., For-
tran. Among high-level languages, those whose
primitive operations manipulate arithmetic expres-
sions, character strings, and I/O streams, and
which are well suited for problem solving in science
and business, are referred to as application lan-
guages. High-level application languages have
been widely accepted because they apply to the
predominant category of megacomputer program-
ming activity and because high-level languages
naturally satisfy the broad needs of this category.

High-level system languages are intended to pro-
vide algebraic notation and high-level control
structures for such things as process scheduling
and resource management, while retaining both
efficiency and the capability for basic machine
operations. The conflict of these high-level and low-
level objectives accounts for the limited acceptance
of system languages compared to the impact of
application languages. The predominant use of
microcomputers clearly falls into the domain of
system programming even though a significant
amount of application programming is emerging.

As with megacomputers, most of this system
programming activity has been done in assembly
language. The traditional assortment of application
language translators (Fortran, Basic, Cobol, and
PL/M,* a dialect of PL/I) has been implemented
for microprocessors for a variety of reasons: 1) re-
gardless of how appropriate they may or may not
be for a given problem, these languages are
familiar; (2) the techniques for compiling or inter-
preting these languages are well established; and
3) a few problems being solved with microproces-
sors are, in fact, application problems. Also, as
with megacomputers, some microprocessor system
problems have been solved with limited success
using the application languages which are available.

System language. It is interesting that so little
microprocessor programming has been done using
established system languages such as BCPL, C,
Simula, or Bliss. This is probably a result of their
limited circulation in the computer science milieu,
their requirement for large, complex compliers, the
limited efficiency of the code they produce, and the
size of the run-time package necessary during pro-
gram execution. All of this could have been said
15 years ago about high-level languges and com-
puters in general.

Objectives

A system programming language designed espe-
cially for microcomputers should have the following
characteristics:

Reinforce good programming practices. Both in
form (syntax) and in meaning (semantics), a high-
level language can facilitate the programming
process by being readable, clearly defined, and
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natural for the representation of algorithms. A lan-
guage whose syntax is complicated by excessive,
illogical, or irregular notation is difficult to learn
and leads to repeated compilation errors. A language
whose semantics are unclear can lead to obscure
logical errors. A language whose primitive opera-
tions are not suitable for representing the solution
to a problem can introduce errors in mapping from
the known solution to a computer program.

Manage computing resources. The details of
resource management (register and memory alloca-
tion in particular), both during the creation and the
execution of a program, are a critical aspect of the
programming process. By managing these details,
a programming language can free the programmer
to think more about the problem to be solved and
less about the state of the machine. On the other
hand, if the management of resources is either
inappropriate or inefficient for data structures, the
language can interfere with the programming pro-
cess. Ideally, the programmer should be able to
control resource management to the degree justified
by the circumstances.

Allow access to the architecture of the machine.
Most microprocessor applications require precise
control of the machine and sometimes require its
full operational capability. Forcing these precision
requirements through the filter imposed by high-
level-language constructs can be awkward and pro-
hibitive. All of the primitive elements and opera-
tions of the machine which are available through
assembly language must be accessible. Otherwise,
the barrier created by the language can prevent a
viable solution from being achieved.

Produce efficient code. While the costs associated
with computer memory continue to drop dramat-
ically, memory costs remain one of the critical
items in determining the economic feasibility of a
microprocessor application due to the multiplier
effect applied to these costs when the system is
replicated. It is often said that microprocessor
manufacturers supply CPU’s in order to promote
memory sales. By knowing the efficiency of a par-
ticular language translator, and by quantifying the
expense of the required memory versus the overall
program development costs, it is possible to deter-
mine the cross-over point at which it is advantageous
to use a high-level language instead of an assembly
language.® In general, the fewer times a system is
to be replicated, the more likely that a high-level
language is appropriate. By improving translation
efficiency, this cross-over point occurs at a higher
replication factor, thus extending the viability of
high-level-language programming to more and more
applications.

Be relatively easy to compile. Certain character-
istics of the translation process are critically
important in the microprocessor environment. First
of all, the compiler should run on the target micro-
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processor. Otherwise, the user is confronted by the
expense and complexity of first running the com-
piler on a host computer and then transferring the
results to the target machine. Second, the speed of
the translation process directly and indirectly affects
program development: Directly, the time it takes
to correct problems in a program is influenced by
compilation time. Indirectly, if the translation
turnaround time is excessive, the programmer is
inhibited from using the compiler to its maximum
benefit and may resort to debugging strategies
which offset the advantages of using a high-level
language.

Application language design for megacomputers
has principally emphasized potent programming
constructs because they offer potential savings in
the most costly aspect of program development—
the human factor. Access to the architecture of the
machine is usually unnecessary and, in fact, unde-
sirable. Efficient code is certainly important in
megacomputer programs, but it is far more critical
in the microcomputer world. The code which micro-
computer compilers produce is being scrutinized
much more than that of their megacomputer
counterparts. While a formidable theory and practice
of code optimization exists, it trades generated
code efficiency for compiler complexity. This may
be an acceptable tradeoff in the megacomputer
domain, but not for smaller and slower microcom-
puters. Here the size and performance of the
compiler represent constraints equally as stringent
as code efficiency.

While system programming languages for mega-
computers have been concerned with these same

objectives, they have been achieved in terms
inappropriate for microcomputers. Because of the
storage capacity and processor speed of megacom-
puters, code efficiency, as stated, has been justifi-
ably attained at the expense of compiler complexity.®

The PLZ family

The PLZ family of languages is an attempt to
appropriately balance the language objectives listed
above for the express purpose of microcomputer
system software development. Each language in
the PLZ family is based on the kernel grammar
described in Table 1. Two members of the family
(PLZ/ASM and PLZ/SYS) are briefly discussed -
here as examples. Programming style and resource
management are governed by conventional high-
level language constructs. Procedure oriented, the
PLZ family has a syntactic and semantic style
which blends elements of Algol, Pascal, and Mesa
to form coherent, easy-to-learn languages. Direct
access to the architecture of the machine is possible
by selecting the PLZ language (PLZ/ASM) which
includes assembly instructions. PLZ compilers can
produce efficient code, and the translation process
is relatively simple because the kernel grammar
has been carefully designed to contain high-level
statements in such a form that they can be trans-
lated easily and mapped into efficient machine-
language sequences.

Modular basis. A PLZ program is a set of
modules; a module is the basic unit of translation.

Table 1. PLZ kernel grammar.

module => module__identifier
MODULE
declaration*
END module__identifier
declaration => externals
=> globals
=> internals
externals => EXTERNAL
identifier +
globals => GLOBAL
identifier__declaration +
internals => INTERNAL
identifier__declaration +
identifier__declaration => identifier + type
[":=" "('constant__expression+')"]
=> procedure
type => simpleftype
=> ARRAY ‘[’constant__expression type’]’
=> RECORD ‘[’identifier__declaration+ "]’
procedure => procedure__identifier
PROCEDURE
local__declaration*
[ENTRY
statement*]
END procedure__identifier

local__declaration => LOCAL
identifier__declaration +

statement => if__statement

=> select__statement

=> do__statement

=> exit__statement

=> repeat__statement

=> procedure__statement

=> return__statement

if__statement => |F condition
THEN statement™
[ELSE statement*]
FI

select__statement => |F selector
select__element*
[ELSE statement*]
FI
select__element => CASE constant__expression+ THEN
statement*
do__statement => [label__identifier]
DO
statement*
0D
exit__statement => EXIT [FROM label__identifier)
repeat__statement => REPEAT [FROM label__identifier]
return__statement => RETURN
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A module consists of data declaration and units of
execution called procedures. While inter-modular
communication is allowed, references across module
boundaries are intended to be less frequent than
those within a module. This serves to localize the
scope of attention of the programmer and reinforces
“information hiding”’ as suggested by Parnas.’
Furthermore, it is intended that a module (code
and data) serve as a unit of overlay for programs
that need not be wholly present in main memory
during execution. Isolating high-frequency references
within a module reduces the potential for transfers
between secondary and primary memory.

Symbol classes. Symbol declarations for modules
separate into three categories (Figure 1). External
declarations refer to identifiers which are defined
in other modules. Global declarations refer to vari-
ables or procedures which reside in the module in
which they are declared and are accessible by other
modules. Internal declarations refer to variables or
procedures which reside in the module in which
they are declared and are private to that module.

Procedures. A procedure consists of the declara-
tion of local variables and a sequence of executable
statements. Conditional or selective execution is
controlled by the if statement and the select state-
ment. They are analogous to conventional condi-
tional and case statements.

The framework provided for repetitive statements
is the do statement. Statements between the
symbols DO and OD are executed repeatedly until
control is diverted through an exit, repeat, or return
statement. The exit statement causes execution to
continue at the first statement following the
DO...0OD block which contains the exit statement,
whereas the repeat statement causes execution to
continue at the first statement of the DO...OD
block which contains the repeat statement. Further-
more, the exit and repeat statements may be
qualified by a label indicating a specific block to
which, or from which, execution continues.

The kernel contains no constructs for the mani-
pulation of data; thus, it is not itself a program-

foo MODULE fie MODULE

EXTERNAL } EXTERNAL

data count
GLOBAL GLOBAL

count INTEGER data BYTE
INTERNAL INTERNAL
tally INTEGER sum INTEGER
END foo END fie »

Figure 1. Module declarations.
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ming language. It is by the addition of data
manipulation to the kernel that a PLZ language is
defined. Thus far, two PLZ languages, PLZ/ASM
and PLZ/SYS, have been implemented.

PLZ/IASM

PLZ/ASM is a low-level system programming
language similar in concept to PL/360,® built by
adding assembly language instructions to the
kernel framework. The assembly language is that
of the Zilog Z80 microprocessor.® The control state-
ments in the kernel primarily generate test and
branch instructions which do not interfere with the
programmer’s control of register values or condition
codes. The ideal use of PLZ/ASM avoids the
assembly versions of branches altogether. The pro-
gram in Figure 2 is written in PLZ/ASM.

This blending of high-level data declaration and
control structure with low-level assembly instruc-
tions creates a balance between desirable program-
ming practices and machine-dependent operations.
Furthermore, the compatibility of PLZ/ASM
modules with other members of the PLZ family
provides convenient and efficient access to low-
level processes without reducing entire program-
ming tasks to this level.

PLZISYS

PLZ/SYS is a high-level system programming
language with no direct access to machine opera-
tions.' The principal construct added is an assign-
ment statement with conventional algebraic nota-
tion. The procedure statement is a special form of
the assignment statement which causes the execu-
tion of the procedure denoted by the procedure
identifier and the assignment of any returned
values. The declaration of the procedure may
include a RETURNS list, in which case the number
of variables in the list must be equal to the number
of variables on the left-hand side of the assignment
operator. An assignment operator is not used in
the case of a procedure which returns no values.
The procedure statement may contain a list of
actual parameters which are assigned or bound to
the corresponding formal parameters declared in
the procedure declaration. Parameters are passed
to the procedure by value only—i.e., the formal
parameter is treated as a local declaration of a
variable whose value is assigned from the actual
parameter list upon entry to the procedure. The
program in Figure 3 is written in PLZ/SYS.

Strong type checking in the style of Mesa is
enforced with data types being either one of the
five predefined simple types (BYTE, WORD, INTEGER,
SHORT__INTEGER, and pointer), one of the two struc-
tured types (ARRAY and RECORD), or the name of a
user-defined type. Pointer types and user-defined
types are modeled after their counterparts in Pas-
cal.'? Data allocation is static except for local data
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requirements which are dynamically allocated to
enable reentrant procedures.

Conclusion

PLZ/ASM and PLZ/SYS are examples of a low-
level and a high-level system language, respectively,
from the PLZ family. A task can be partitioned
into PLZ/ASM and PLZ/SYS modules depending
on its low-level versus high-level requirements.
Once individual modules (written in different lan-
guages of the PLZ family) have been translated
into relocatable machine code, they can be linked
together into a single program. The static and
dynamic linkage conventions between modules are
facilitated by the syntactic similarity of data declar-
ations throughout the family.

bubble__sort MODULE

CONSTANT
flag: = 0
INTERNAL
y ARRAY [10 BYTE]
;=33 10200 40 41 3 3 33 50 199)

sort PROCEDURE

! This procedure uses a standard exchange (bubble) sort
algorithm to sort the elements of array "y’ in ascending
order. At entry, register b contains ‘n’, the number
of elements to be sorted !

ENTRY
DO

res flag,c ! switched : = false !
Id ix,y !y[i] address with i=0 '
Id d,b
dec d !imit := n—-1!
DO
IF ZERO ! test i > limit !
THEN EXIT
Fl
Id e, (ix)
Id a,(ix+1)
cp e Itest y[i1> yli+1]!
IF CARRY
THEN
Id (ix),a ! interchange !
Id (ix+1),e !yliland y[i+1]!
set flag,c ! switched : = true !

! bit position of switch indicator !

FI
inc  ix lic=i+1!
dec d
0D
bit flag,c
IF ZERO ! test if switched !
THEN RETURN
FI .
oD
END sort
main PROCEDURE
ENTRY
Id b,10 Isetn!
sort
RETURN
END main

END bubble__sort

Figure 2. Sample PLZ/ASM program.

bubble__sort MODULE

CONSTANT
true .= 1
false := 0

INTERNAL
y ARRAY [10 INTEGER] ! unsorted array !

:= (33 10 2000 400 410 3 3 33 500 199)

sort PROCEDURE (n BYTE)

! This procedure uses a standard exchange (bubble) sort
algorithm to sort the elements of array 'y’ into ascending
“order. The value of the parameter “n’ is the number of
items to be sorted!

LOCAL
i jlimit BYTE
temp INTEGER
switched BYTE

! indices for stepping through array !

! flag to indicate completion !

ENTRY
limit := n-2 ! stopping point for index !
DO
switched : = false ! initialize flag to indicate no !
! changes !
i:=0 ! start at first array element !
DO
IF i > limit I exit if pass through array complete !
THEN EXIT
Fl
ji=i+1 ! index of adjacent element !
IF ylil > vIjl | compare adjacent elements !
THEN
temp := ylil ! interchange elements !
ylil = ylil
ylil = temp
switched := true ! indicate switch !
FlI
i=i+1 ! advance to next pair !
0D

IF NOT switched
THEN RETURN
Fl
0D
END sort
main PROCEDURE
ENTRY
sort (10) ! invoke sort procedure !
RETURN
END main

END bubble__sort

! return if no changes !

Figure 3. Sample PLZ/SYS program.

Other PLZ family members are being contem-
plated—one with complete dynamic allocation for
list processing, one with an extensive math pack-
age, one for coordinating concurrent processes, one
for graphics, and one for text processing. Having
simple specialized languages similar in concept to
the siMPL family*® is more desirable than collecting
these features into a single language. W
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